- 1. A particle moves on the x-axis so that its velocity at any time $t \ge 0$ is given by $v(t) = 12t^2 36t + 15$. At t = 1, the particle is at the origin.
- 0
 - (a) Find the position x(t) of the particle at any time $t \ge 0$.
 - (b) Find all values of t for which the particle is at rest.
 - (c) Find the maximum velocity of the particle for $0 \le t \le 2$.
 - (d) Find the total distance traveled by the particle from t = 0 to t = 2.

1994 - AB3

- 3. Consider the curve defined by $x^2 + xy + y^2 = 27$.
- (a) Write an expression for the slope of the curve at any point (x, y).
 - (b) Determine whether the lines tangent to the curve at the x-intercepts of the curve are parallel. Show the analysis that leads to your conclusion.
 - (c) Find the points on the curve where the lines tangent to the curve are vertical.

1994 - AB4

- 4. A particle moves along the x-axis so that at any time t > 0 its velocity is given by $v(t) = t \ln t t$. At time t = 1, the position of the particle is x(1) = 6.
- (a) Write an expression for the acceleration of the particle.
 - (b) For what values of t is the particle moving to the right?
 - (c) What is the minimum velocity of the particle? Show the analysis that leads to your conclusion.
 - (d) Write an expression for the position x(t) of the particle.

1994 - AB5, BC2

- 5. A circle is inscribed in a square as shown in the figure above. The circumference of the circle is increasing at a constant rate of 6 inches per second. As the circle expands, the square expands to maintain the condition of tangency. (Note: A circle with radius r has circumference $C = 2\pi r$ and area $A = \pi r^2$.)
 - (a) Find the rate at which the perimeter of the square is increasing. Indicate units of measure.
 - (b) At the instant when the area of the circle is 25π square inches, find the rate of increase in the area enclosed between the circle and the square. Indicate units of measure.

2001: AB-4; BC-4

Let h be a function defined for all $x \neq 0$ such that h(4) = -3 and the derivative of h is given by

 $h'(x) = \frac{x^2 - 2}{x} \text{ for all } x \neq 0.$

- (a) Find all values of x for which the graph of h has a horizontal tangent, and determine whether h has a local maximum, a local minimum, or neither at each of these values. Justify your answers.
- (b) On what intervals, if any, is the graph of h concave up? Justify your answer.
- (c) Write an equation for the line tangent to the graph of h at x = 4.
- (d) Does the line tangent to the graph of h at x = 4 lie above or below the graph of h for x > 4? Why?

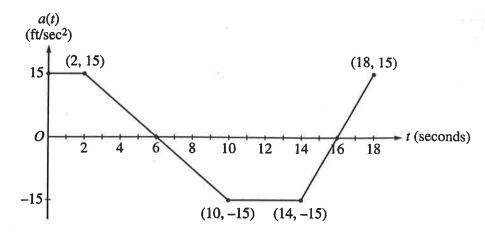
2001: AB-2; BC-2

t	W(t)
(days)	(°C)
0	20
3	31
6	28
9	24
12	22
15	21

The temperature, in degrees Celsius ($^{\circ}$ C), of the water in a pond is a differentiable function W of time t. The table above shows the water temperature as recorded every 3 days over a 15-day period.

- (a) Use data from the table to find an approximation for W'(12). Show the computations that lead to your answer. Indicate units of measure.
- (b) Approximate the average temperature, in degrees Celsius, of the water over the time interval $0 \le t \le 15$ days by using a trapezoidal approximation with subintervals of length $\Delta t = 3$ days.
- (c) A student proposes the function P, given by $P(t) = 20 + 10te^{(-t/3)}$, as a model for the temperature of the water in the pond at time t, where t is measured in days and P(t) is measured in degrees Celsius. Find P'(12). Using appropriate units, explain the meaning of your answer in terms of water temperature.
- (d) Use the function P defined in part (c) to find the average value, in degrees Celsius, of P(t) over the time interval $0 \le t \le 15$ days.

2001: AB-3; BC-3



A car is traveling on a straight road with velocity 55 ft/sec at time t = 0. For $0 \le t \le 18$ seconds, the car's acceleration a(t), in ft/sec², is the piecewise linear function defined by the graph above.

- (a) Is the velocity of the car increasing at t = 2 seconds? Why or why not?
- (b) At what time in the interval $0 \le t \le 18$, other than t = 0, is the velocity of the car 55 ft/sec? Why?
- (c) On the time interval $0 \le t \le 18$, what is the car's absolute maximum velocity, in ft/sec, and at what time does it occur? Justify your answer.
- (d) At what times in the interval $0 \le t \le 18$, if any, is the car's velocity equal to zero? Justify your answer.